一 read_only_allow_delete" : "true"

当我们在向某个索引添加一条数据的时候,可能(极少情况)会碰到下面的报错:

{
  "error": {
    "root_cause": [
      {
        "type": "cluster_block_exception",
        "reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
      }
    ],
    "type": "cluster_block_exception",
    "reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
  },
  "status": 403
}

上述报错是说索引现在的状态是只读模式(read-only),如果查看该索引此时的状态:

GET z1/_settings
# 结果如下
{
  "z1" : {
    "settings" : {
      "index" : {
        "number_of_shards" : "5",
        "blocks" : {
          "read_only_allow_delete" : "true"
        },
        "provided_name" : "z1",
        "creation_date" : "1556204559161",
        "number_of_replicas" : "1",
        "uuid" : "3PEevS9xSm-r3tw54p0o9w",
        "version" : {
          "created" : "6050499"
        }
      }
    }
  }
}

可以看到"read_only_allow_delete" : "true",说明此时无法插入数据,当然,我们也可以模拟出来这个错误:

PUT z1
{
  "mappings": {
    "doc": {
      "properties": {
        "title": {
          "type":"text"
        }
      }
    }
  },
  "settings": {
    "index.blocks.read_only_allow_delete": true
  }
}
PUT z1/doc/1
{
  "title": "es真难学"
}

现在我们如果执行插入数据,就会报开始的错误。那么怎么解决呢?

  • 清理磁盘,使占用率低于85%。
  • 手动调整该项,具体参考官网

这里介绍一种,我们将该字段重新设置为:

PUT z1/_settings
{
  "index.blocks.read_only_allow_delete": null
}

现在再查看该索引就正常了,也可以正常的插入数据和查询了。

二 illegal_argument_exception

有时候,在聚合中,我们会发现如下报错:

{
  "error": {
    "root_cause": [
      {
        "type": "illegal_argument_exception",
        "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
      }
    ],
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [
      {
        "shard": 0,
        "index": "z2",
        "node": "NRwiP9PLRFCTJA7w3H9eqA",
        "reason": {
          "type": "illegal_argument_exception",
          "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
        }
      }
    ],
    "caused_by": {
      "type": "illegal_argument_exception",
      "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead.",
      "caused_by": {
        "type": "illegal_argument_exception",
        "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
      }
    }
  },
  "status": 400
}

这是怎么回事呢?是因为,聚合查询时,指定字段不能是text类型。比如下列示例:

PUT z2/doc/1
{
  "age":"18"
}
PUT z2/doc/2
{
  "age":20
}
GET z2/doc/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "my_sum": {
      "sum": {
        "field": "age"
      }
    }
  }
}

当我们向elasticsearch中,添加一条数据时(此时,如果索引存在则直接新增或者更新文档,不存在则先创建索引),首先检查该age字段的映射类型。

如上示例中,我们添加第一篇文档时(z1索引不存在),elasticsearch会自动的创建索引,然后为age字段创建映射关系(es就猜此时age字段的值是什么类型,如果发现是text类型,那么存储该字段的映射类型就是text),此时age字段的值是text类型,所以,第二条插入数据,age的值也是text类型,而不是我们看到的long类型。我们可以查看一下该索引的mappings信息:

GET z2/_mapping
# mapping信息如下
{
  "z2" : {
    "mappings" : {
      "doc" : {
        "properties" : {
          "age" : {
            "type" : "text",
            "fields" : {
              "keyword" : {
                "type" : "keyword",
                "ignore_above" : 256
              }
            }
          }
        }
      }
    }
  }
}

上述返回结果发现,age类型是text。而该类型又不支持聚合,所以,就会报错了。解决办法就是:

  • 如果选择动态创建一篇文档,映射关系取决于你添加的第一条文档的各字段都对应什么类型。而不是我们看到的那样,第一次是text,第二次不加引号,就是long类型了不是这样的。
  • 如果嫌弃上面的解决办法麻烦,那就选择手动创建映射关系。首先指定好各字段对应什么类型。后续才不至于出错。

三 Result window is too large

很多时候,我们在查询文档时,一次查询结果很可能会有很多,而elasticsearch一次返回多少条结果,由size参数决定:

GET e2/doc/_search
{
  "size": 100000,
  "query": {
    "match_all": {}
  }
}

而默认是最多范围一万条,那么当我们的请求超过一万条时(比如有十万条),就会报:

Result window is too large, from + size must be less than or equal to: [10000] but was [100000]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting.

意思是一次请求返回的结果太大,可以另行参考 scroll API或者设置index.max_result_window参数手动调整size的最大默认值:

# kibana中设置
PUT e2/_settings
{
  "index": {
    "max_result_window": "100000"
  }
}
# Python中设置
from elasticsearch import Elasticsearch
es = Elasticsearch()
es.indices.put_settings(index='e2', body={"index": {"max_result_window": 100000}})

如上例,我们手动调整索引e2的size参数最大默认值到十万,这时,一次查询结果只要不超过10万就都会一次返回。

注意,这个设置对于索引es的size参数是永久生效的。

以上就是Elasticsearch在应用中常见错误示例解析的详细内容,更多关于Elasticsearch错误示例解析的资料请关注阿兔在线工具其它相关文章!

点赞(0)

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部